Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor.

نویسندگان

  • Nicholas P Vyleta
  • Stephen M Smith
چکیده

Spontaneous release of glutamate is important for maintaining synaptic strength and controlling spike timing in the brain. Mechanisms regulating spontaneous exocytosis remain poorly understood. Extracellular calcium concentration ([Ca(2+)](o)) regulates Ca(2+) entry through voltage-activated calcium channels (VACCs) and consequently is a pivotal determinant of action potential-evoked vesicle fusion. Extracellular Ca(2+) also enhances spontaneous release, but via unknown mechanisms. Here we report that external Ca(2+) triggers spontaneous glutamate release more weakly than evoked release in mouse neocortical neurons. Blockade of VACCs has no effect on the spontaneous release rate or its dependence on [Ca(2+)](o). Intracellular [Ca(2+)] slowly increases in a minority of neurons following increases in [Ca(2+)](o). Furthermore, the enhancement of spontaneous release by extracellular calcium is insensitive to chelation of intracellular calcium by BAPTA. Activation of the calcium-sensing receptor (CaSR), a G-protein-coupled receptor present in nerve terminals, by several specific agonists increased spontaneous glutamate release. The frequency of spontaneous synaptic transmission was decreased in CaSR mutant neurons. The concentration-effect relationship for extracellular calcium regulation of spontaneous release was well described by a combination of CaSR-dependent and CaSR-independent mechanisms. Overall these results indicate that extracellular Ca(2+) does not trigger spontaneous glutamate release by simply increasing calcium influx but stimulates CaSR and thereby promotes resting spontaneous glutamate release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermally active TRPV1 tonically drives central spontaneous glutamate release.

Central synapses spontaneously release neurotransmitter at low rates. In the brainstem, cranial visceral afferent terminals in caudal solitary tract nucleus (NTS) display pronounced, activity-dependent, asynchronous release of glutamate and this extra release depends on TRPV1 receptors (TRPV1+). Asynchronous release is absent for afferents lacking TRPV1 (TRPV1-) and resting EPSC frequency was g...

متن کامل

Synaptic transmission mediated by internal calcium stores in rod photoreceptors.

Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when e...

متن کامل

Calcium-Dependent and Synapsin-Dependent Pathways for the Presynaptic Actions of BDNF

We used cultured hippocampal neurons to determine the signaling pathways mediating brain-derived neurotrophic factor (BDNF) regulation of spontaneous glutamate and GABA release. BDNF treatment elevated calcium concentration in presynaptic terminals; this calcium signal reached a peak within 1 min and declined in the sustained presence of BDNF. This BDNF-induced transient rise in presynaptic cal...

متن کامل

Histamine and its Releasing Agents

Spontaneous histamine release from isolarted Mastcells was found to be independent of cal­cium in the concentration range up to 1 m. mole/lit. Phosphatidyl serine do not change the effect of calcium on spontaneous release. The activation of anaphyla.ctic histamine release by calcium is potentiated by phosphatidyl serine but the laitter can't do so w1th strontium.  Mastcells, pretreated with AT...

متن کامل

Direct Anandamide Activation of TRPV1 Produces Divergent Calcium and Current Responses

In the brainstem nucleus of the solitary tract (NTS), primary vagal afferent neurons express the transient receptor potential vanilloid subfamily member 1 (TRPV1) at their central terminals where it contributes to quantal forms of glutamate release. The endogenous membrane lipid anandamide (AEA) is a putative TRPV1 agonist in the brain, yet the extent to which AEA activation of TRPV1 has a neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2011